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und den Spezialfall der Punktlage 48(f) in Ia3d (ein 
Freiheitsgrad). Schwieriger wird im dreidimensionalen 
Fall vor allem die anschauliche Darstellung der Ergeb- 
nisse, da einerseits die zu betrachtenden Parameter- 
r/iume h/Shere Dimensionszahlen aufweisen k6nnen 
(maximal 8 ffir P i ) ,  andererseits die topologische Sym- 
bolisierung nicht auf so einfache Weise wie im Falle 
der Kreispackungen m6glich ist. 

Mein Dank gilt an dieser Stelle Herrn Prof. Dr E. 
Hellner, der die Anregung zur Besch/iftigung mit die- 
sen Problemen gegeben hat und dartiber hinaus durch 
zahlreiche Diskussionen zum Fortschritt der Arbeit 
beigetragen hat. 
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Many-Beam Dynamical Theory of the Line in the Middle of a Kiknehi Band 
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The unindexed line which runs along the middle line of a Kikuchi band is explained in the case of the 
200 band from magnesium oxide by the theory of Kikuchi patterns [Kainuma, Acta Cryst. (1955) 8, 247]. 
The intensity profile across the line is estimated without solving the equation of the dispersion surface, 
by using a matrix formulation of the many-beam dynamical theory. In the estimation, the 000, 200 and 
400 reflexions of elastically scattered waves and the ~00, 000 and 200 reflexions of inelastically scattered 
waves are taken into account. The result of the calculation agrees qualitatively with the observation. 

Introduction 

Many researchers on electron diffraction have observed 
a line which runs along the middle line of a Kikuchi 
band. For example, Ichinokawa & Fukano (1952) ob- 
served it for molybdenite, Pfister (1953) for lead iodide, 
and Uyeda & Nonoyama (1965b) for magnesium oxide. 
The line cannot be indexed as a Kikuchi line. It ap- 
pears as an excess, deficient or excess-deficient line 
according to experimental conditions. The excess line 
is black, and the deficient line white, on photographic 
plates. The excess-deficient line is black on one side 
and white on the other side of the line. In this article, 
the unindexed line is explained by the theory of Ki- 
kuchi patterns (Kainuma, 1955). The intensity profile 
across the line is calculated in the case of magnesium 
oxide. A matrix formulation of the many-beam dynam- 
ical theory is used in the calculation, where three beams 
of elastically scattered electrons and three beams of 
inelastically scattered electrons are taken into account. 
The result of the calculation is qualitatively in agree- 
ment with the observation. 

Intensity formula of Kikuchi patterns 

A number of photographs of diffraction patterns from 
magnesium oxide were taken by Uyeda & Nonoyama 
(1965a). In the diffraction patterns the unindexed line 

runs along the middle line of the 200 Kikuchi band 
as shown in Fig. 1. The intensity of this line becomes 
appreciable near the Bragg condition for the 400 re- 
flexion. 

The 000, 200 and 400 reflexions are strong in this 
case. Therefore, these three waves are taken into ac- 
count in the theory. Their wave vectors are denoted 
by ko, kH, k2n and the amplitudes by uo, un, u2n, where 
O represents 000 and H, 200. These waves are excited 
by the vacuum incident wave with the wave vector Ko, 
as shown in Fig.2(a). The amplitude of the incident 
wave is normalized to unity. 

The inelastically scattered waves produce the Ki- 
kuchi pattern and continuous background. We con- 
sider an inelastically scattered wave which propagates 
to the observation point on or near the unindexed line. 
The wave vector of this wave is denoted by K o and its 
amplitude on the exit surface is normalized to unity. 
This wave is connected with the crystal waves taking 
account of three waves, 200, 000 and 200. These waves 
have the wave vectors k'__H, ko, k~r and the amplitudes 
u_B, Uo, us  as shown in Fig. 2(b). 

The intensity of the Kikuchi pattern is given as a 
function of Ko and Ko. For wedge-shaped crystals it 
is written as follows (Kainuma & Kogiso, 1967), 

S(bgg,,bh~,) 
J(K°;K°)°c h,g • h',g'~r ~-g. .b~. " Ing . Ih* r . (1) 

A C 24A - 6* 
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Fig. 1. Diffraction pattern from magnesium oxide for 6-~0.09 A-2 or dO/(OB)n~_0.42. The unindexed line has an excess-deficient 
structure. (By courtesy of Professor Ryozi Uyeda.) 
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The factor S in the formula (1) is the structure factor 
of the Kikuchi pattern (Kainuma, 1955). The wave 
vector boo' is the scattering vector defined as 

bgg"= k g -  kg,. (2) 

The factors 1no and I~,,~, are defined as 

I~ O = Z U(g v)* . U(n v) , 
V 

I'n,g,= Z u'gg")" . u'ng") , (3) 

where v and v' specify the branches of the dispersion 
surface. It should be noted that the formula (1) is 
derived by taking into account only a single inelastic 
scattering. In the present problem, h and g stand for 
O, H and 2H, and h' and g', for fi, O and H. 

If the observation point lies near the 200 reflexion 
spot, the terms with small values of b w  and bnh, are 
dominant in the summation. Thus the intensity formula 
(1) can be reduced to 

S(K0;K0)oc Z '  Iho. I'n,*,, (4) 
h,g,h ',g ' 

where the summation is taken over g, g', h and h', 
which satisfy the relation 

g ' - g = h ' - h = 2 0 0 .  (5) 

In the derivation of formula (4), the term S(b00", 
b~n,) /b~, ,  b~,h, is regarded as constant. 

Elements Ihg and I~,~, 

The matrix formulation of the many-beam dynamical 
theory of electron diffraction was developed by several 
authors (Niehrs & Wagner, 1955; Sturkey, 1957; 
Niehrs, 1959; Fujimoto, 1959; Kogiso & Kainuma, 
1967). According to Kogiso and Kainuma, the elements 
Ihg and I~,, 8, can be derived without solving the equa- 
tion of the dispersion surface, as follows: 

where 

,D h o "-~ -- 

and 

I k g =  Dhe[D , (6) 

0 (E)og (M)og (MZ)og 

(E)ho So s1 $2 

( M ) h o  $1 s2 s3 

(MZ)ho s2 s3 s4 

s0 s1 ,$'2 

D = sl s2 s3 • 
S2 $3 $4 

The matrices E and M in equation (7) are given as 

E--  1 
0 

and 

M =  I 
.Oo V-H V-2H) 

vn  pH v-H . 

V2H VH P2H 

(7) 

(8) 

(9) 

(10) 

In equation (10) Vg is the Fourier coefficient of the 
crystal potential expressed in A -2, and pg is the par- 
ameter defined by 

p g = x 2 - K ~  , (11) 
where 

Kg : K 0 + g .  (12) 

The wave vector Ko has the same tangential component 
to the crystal surface as the wave vector Ko, and has 
the magnitude X o = x = ( K ~ + v o )  ~. The symbol sn in 
equations (7) and (8) denotes the trace of the nth power 
of the matrix M ,  i.e. 

sn =Spur  ( M n ) .  (13) 

A formula with the same form as equation (6) 
t • t 

In, r = Dn,~,/D (14) 
is obtained for the expression of I~,,~,, if M and sn in 
equations (7) and (8) are replaced by M '  and s~,, re- 
spectively, where 

? ' - - H  V-H V - z n \  

M ' =  I v n  Po vTn ) (15) 
\ 1)2H VH PH / 

and 
s~,= Spur (M'n) .  (16) 

In equation (15)pg, is defined as 
• '2 '2 (17) p g , = K  --Kg, , 

where 
t ~ , = r ~ + g ' .  (18) 

The wave vector K 0 has the same tangential component 
to the crystal surface as the wave vector Ko, and has 
the magnitude X'o = x' = (Ko 2 + vo) ~. 

The diagonal elements of the matrices M and M '  
satisfy the following relations: 

and 

P0 = 0  , 

p H  = ½ . P2H+ H 2 (19) 

s 

Po = 0 ,  
. . . . . . .  2 (20) P--H = ½" (P--H--PH) -- 1-1 . 

The following parameters J and J'  are used as abbre- 
viations" 

ko kH k2H k'-H k'o k'H 

(a) (b) l K'° 

Fig.2. Schematic  d iagram of  waves. (a) Incident  wave in 
vacuum and elastically scattered waves in the crystal.  (b) 
Inelastically scat tered wave towards  the observat ion point  
and crystal waves connected  with it. 
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6 = ½. P2H = --  2KH. H ,  
6 ' = ½ .  ( p ' _ x - p ~ ) = 2 K o .  H ,  (21) 

where K~r is the wave vector of the Hth wave in vacu- 
um. The second expressions in equations (21) follow 
since H is parallel to the crystal surfaces. 

The parameter 6 is determined by the direction of 
the incident wave and 6' by the observation point. 
These parameters are approximately proportional to 
the angular deviations ,40 and AO' as follows, 

1 AO 
6 = . . . .  . . . .  , 

dn2" (O~)H 

1 AO' 
6 ' =  , (22) 

d n 2  " 

where dH and (0B)H are respectively the interplanar 
spacing and the Bragg angle for H=200.  ,40 is the 
angular deviation of the incident beam from the exact 
Bragg position of the 400 reflexion, namely, A O = O -  
(0B)2m where 0 is the glancing angle of the incident 
beam to the net plane H and (0B)EH is the Bragg angle 
for 2H=400.  ,40' is the angle between K o and the net 

plane H. AO' corresponds to the angular deviation of 
the observation point from the middle of the 200 band. 
If the observation point lies exactly in the middle of 
the band, we have AO'=O. AO' is positive or negative 
according as the observation point lies on the side 
nearer to the 400 reflexion spot or to the incident spot. 

The terms Dhg and D in equations (7) and (8) are 
written as polynomials of less than the 7th degree in 
the parameter 6. D~,,g, and D' are also written in 6'. 
The coefficients of these polynomials are defined by 
vm V2H and H 2 . Adopting the values VH = 5.42 x 10-2A -2 , 
V E H = 2 " 5 2 ×  10-2i lk  -2 and the lattice parameter a =  
4.2117 A, Ihg and Ih, g, are calculated as functions of 
6 and 6', respectively. The results are shown in Fig. 3. 
It should be noted that Ihh and I'h,h, are the intensities 
averaged over the thickness of h and h' reflexions, re- 
spectively, and that Z" Ih~ = 1 and L" 1"i,, h, = 1. 

h h' 

Intensity profiles 

The intensity profiles across the unindexed line calcu- 
lated by formula (4) are shown in Fig. 4 as functions 
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Fig. 3. Elements  lng and  I'h,g, as funct ions of  6 and 6'. 
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Fig.4. Intensity profiles across the unindexed line for various 
values of 6. 

of fi', or AO'/(OB)H, for various values of &, or  AO/(OB)H. 
Fig.4(a) shows that the unindexed line is very faint 
when the Bragg condition for the 400 reflexion is ex- 
actly satisfied. For small values of 161, the line appears 
as an excess or deficient line. It is excess or deficient 
respectively for negative or positive values of fi, as 
shown in Fig. 4(b). 

For large values of 161, the unindexed line has an 
excess-deficient structure as shown in Fig. 4(c) and (d). 
This structure is observed in Fig. 1. The deficient side 
of the line in Fig. 1 is found nearer to the incident spot, 
and the breadth of the line is about (1/IO)(OB)H, which 
is the same order as the Bragg width of the 400 re- 
flexion. These features are in agreement with those in 
Fig. 4(c) and (d). 

The authors wish to express their sincere thanks to 
Professor Ryozi Uyeda for his helpful discussions. This 

work was partially supported by the Grants-in-Aid for 
Cooperative Scientific Research from the Ministry of 
Education. 
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